A Framework for Multi-Objective Clustering and Its Application to Co-Location Mining
نویسندگان
چکیده
The goal of multi-objective clustering (MOC) is to decompose a dataset into similar groups maximizing multiple objectives in parallel. In this paper, we provide a methodology, architecture and algorithms that, based on a large set of objectives, derive interesting clusters regarding two or more of those objectives. The proposed architecture relies on clustering algorithms that support plug-in fitness functions and on multi-run clustering in which clustering algorithms are run multiple times maximizing different subsets of objectives that are captured in compound fitness functions. MOC provides search engine type capabilities to users, enabling them to query a large set of clusters with respect to different objectives and thresholds. We evaluate the proposed MOC framework in a case study that centers on spatial co-location mining; the goal is to identify regions in which high levels of Arsenic concentrations are co-located with high concentrations of other chemicals in the Texas water supply.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملSolving a bi-objective location routing problem by a NSGA-II combined with clustering approach: application in waste collection problem
It is observed that the separated design of location for depots and routing for servicing customers often reach a suboptimal solution. So, solving location and routing problem simultaneously could achieve better results. In this paper, waste collection problem is considered with regard to economic and societal objective functions. A non-dominated sorting genetic algorithm (NSGA-II) is used to l...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملFacility Location and Inventory Balancing in a Multi-period Multi-echelon Multi-objective Supply Chain: An MOEA Approach
A comprehensive and integrated study of any supply chain (SC) environment is a vital requirement that can create various advantages for the SC owners. This consideration causes productive managing of the SC through its whole wide components from upstream suppliers to downstream retailers and customers. On this issue, despite many valuable studies reported in the current literature, considerabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009